
Heterogeneous-ISA Application Migration
in Edge Computing: Challenges, Techniques

and Open Issues

Hang Jin1, Yihong Su1, Fengzhou Liang1, and Fang Liu1,2(B)

1 School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou 510006, China

{jinh26,suyh35,liangfzh}@mail2.sysu.edu.cn
2 School of Design, Hunan University, Changsha 410082, China

fangl@hnu.edu.cn

Abstract. With the development of mobile edge computing, more and more ser-
vices are moved to the edge of the network, and devices there are usually with low
computational abilities and little storage resources. To make it lightweight and
elastic, containers can be adopted in the edge environment when migrating a cer-
tain application.With the host OS kernel shared, applications can be deployedwith
the least computational resources they need, making it possible to deploy more of
them on relatively low-end devices. Migration is also used in scenarios like main-
tenance or load balance, etc. We noticed that in edge environment, devices and
servers are usually built with heterogeneous Instruction Set Architectures (ISAs)
processors. X86 processors are widely used in desktop PCs, laptops and servers
while smart-phones are built with an ARM processor, which leads to a serious
problem that a container cannot be migrated to a heterogeneous machine to con-
tinue running directly. In this paper, we firstly give an overview of heterogeneous-
ISA migration, and its applications and techniques. Then we discuss the existing
heterogeneous execution solution from the perspective of applicable scenarios,
latency, power consumption, requirements for computational resources, etc. Next,
a comparison study is given on each of the characteristics to depict the details and
differences in existing works. At last, challenges and open research issues which
are waiting for further studies on container migration are listed.

Keywords: Heterogeneous migration · Edge computing · Container

1 Introduction

EdgeComputing [1] is a novel computing paradigm inwhich computation are performed
at the edge of the network. Data are processed closer to the user in both physical and
in the topology of the network. Thanks for edge computing, instead of sending all data
generated by mobile devices (e.g. smartphones and IoT devices) to the cloud, data can
be processed at anywhere between the end user and the data center so the burden of
backbone network bandwidth and data center is reduced and the request for a certain
service can be responded faster than cloud computing.

© Springer Nature Switzerland AG 2021
X. Sun et al. (Eds.): ICAIS 2021, CCIS 1423, pp. 106–118, 2021.
https://doi.org/10.1007/978-3-030-78618-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78618-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-78618-2_9


Heterogeneous-ISA Application Migration 107

Virtualization technology is widely used nowadays to make full use of a physical
server by dividing it into independent execution environments logically. The most com-
monly used virtualization technologies are Virtual Machines (VMs) and Containers.
Normally, each VM represents a single full-system execution environment so it will
provide user with a highly isolated environment by installing and running a full operat-
ing system inside which will occupies much computation and storage resources. In the
age of cloud computing, VMs are deployed in data centers for isolation and they are
transparent to users. With the development of edge computing, more and more relatively
low-end devices, such as gateways, routers, wireless APs and mobile phones, are work-
ing at the edge of the network. Since these devices have little computation resources, it
is not advisable to deploy VMs without a deeper consideration. In some circumstances,
containers can be simply deployed and managed at the edge since they only require little
computation and storage resources.

Migration is a technology commonly used by cloud service providers to migrate a
VM from a certain physical server to another for maintenance or load balance propose in
cloud computing while container migration is more likely to be used in edge computing
to provide user with a certain service consistently though the mobile user is moving to
a new place physically.

At the edge of the network, devices there are not always built in the same Instruction
Set Architecture [2] which means that we cannot migrate a container built in a certain
instruction set to another so heterogenous-ISAmigration is proposed to provide amethod
for applications to migrate to any other edge nodes, regardless of what instruction set
the source node and the destination node are.

However, after we studied the existing works which focus on heterogenous-ISA
application migration, there is no public literature to make a comparative insight about
this topic, especially container migration. In this paper, our research analyzes vari-
ous solution in heterogenous-ISA migration problems and provide an overview of the
existing challenges, techniques and open issue.

As we did our best to know, this paper is the first to provide a full overview of the
heterogenous-ISA application migration, especially container migration. Contributions
of this paper can be summarized as follows:

• Reviewing the solution of the existing works on application migration in mobile edge
computing from the perspective of techniques.

• Analyzing the adaptive application scenarios and motivation of existing solution to
migrate an application to a heterogenous-ISA platform.

• Helping to make a choice when selecting a solution or technique route to perform a
heterogenous-ISA migration in production environment.

• Identifying the existing challenges and open issues of heterogenous-ISA migration
which are worth more research conducted on.

The remaining part of this paper are organized as follows. In Sect. 2, we list and
discuss several main solutions of running applications on heterogenous platforms. In
Sect. 3, we classify this problem in detail from the perspective of different types of
programming languages and their respective solution on this problem. In Sect. 4, we
analyze some typical existing works from the perspective of main purposes. In Sect. 5,



108 H. Jin et al.

we make comparisons on the typical works, then list the challenges and open issues
in heterogenous-ISA application migration. Finally, we summarize our conclusions in
Sect. 6.

2 Virtualization and Migration

Execution isolation is essential for both cloud and edge applications, which can be real-
ized by virtualization technology. We summarize this into measures below: simulation,
VM and container. The rest of this section will discuss them in detail.

From the perspective of migration, there are two types of ways to migrate a VM or
container: non-live migration and live migration. Non-live migration means the state of
the runtime information is saved to a file for further use such as instance cloning, state
backup and rolling back, etc. Live migration is used to provide consistent service, such
as quick replication [3], load balancing [4], and keeping relatively closed to the user [2],
etc.

2.1 Simulation

Simulation refers to migrating the application process to the destination platform and
keeping running on a full-system simulator (e.g., QEMU [5]) on the destination site,
and the simulator simulates the whole hardware of a computer. However, the simulated
hardware is usually implemented by software which leads to a performance bottleneck
compared with running on real hardware so it is not adaptable to be used in production
environment in most circumstances.

2.2 Virtual Machine

Each virtual machine is an isolated execution environment on the host machine with its
own guest operating system running inside. To deploy a VM, a hypervisor is necessary
formanagement use. A virtual machine can be deployed right on the top of host hardware
[6] or on the host operating system [7, 8]. Though VMs can provide relatively more inde-
pendent execution environment for guest processes, the guest operating system installed
will take much storages and memory spaces, regardless of whether a system component
or service is utilized by the application.

In the age of cloud computing, VM ismost popular virtualization solution utilized by
data centers to divide an integrate server into small virtual machines logically while the
hardware resources are shared physically. Cloud service providers (AWS, Aliyun, etc.)
can also rent VMs to customers and provide them with a remote access to deploy their
applications on these infrastructures, which is also known as Infrastructures as a Service
(IaaS). As we described above, a virtual machine has a relatively isolated execution
environment but it will occupy a great amount of physical resources.

VMs can be packed and exported to other physical servers by simply migrating the
disk image and settings to achieve this. However, to migrate a VM lively, the whole state
and data of the running VM should be all transferred to the destination site, including
register state, memory, storage data and network connections. Existing method to lively



Heterogeneous-ISA Application Migration 109

migrate memory of a VM are summarized as pre-copy [9], post-copy [10] and hybrid-
copy [11]. The storage data can be migrated by method similar to that of memory data
migration. Though there is quite an amount of works on VMmigration, it can be difficult
to migrate them to a heterogenous-ISA platform since it is heavy and there are some
OS-level limitation which is ISA-related. We will not make a further discussion about
VM migration.

2.3 Containers

Container is a technology which is implemented by sharing the host OS kernel with the
container’s own file system. As containers can be generated and disposed easily and
provide a relatively isolated lightweight execution environment for guest process, they
arewidely deployed inproduction for applicationpacking,management and environment
isolation. Since containers share the host OS kernel instead of executing processes in
their own guest OS execution environment, the level of isolation is less than that of VMs.

Since containers are executed on the top of host OS, the migration of them are more
similar to process migration. The usually used method of migrating a container/process
lively is CRIU [12], an open source checkpointing tool for checkpointing and restor-
ing an image of the migrated container/process. Similar with VM migration, container
migration also consists of migration of register state, memory, storage data and network
connections. In the rest of our paper, we will not differentiate container migration and
process migration since they are basically similar to each other.

2.4 A Comparative Study

In this section, we summarize the advantages and disadvantages of the main ways of
migration discussed above. Figure 1 shows the basic architecture of each specificmeasure
of virtualization and Table 1 shows the comparative features of them.

Fig. 1. Basic architecture of various measures of virtualization



110 H. Jin et al.

Table 1. Features of various measures of migration

Method Oriented
scenarios

Performance Volume
of data

Migration
velocity

Migration
overhead

Support for
heterogenous
migration

Environment
isolation

Simulation Experimental Very low Large Very slow High Fine Fine

Virtual
machines

Cloud Normal Large Slow Normal Terrible Fine

Containers Cloud &
edge

Normal Little Fast Low Acceptable Acceptable

As we depicted above, simulation can lead to a serious performance bottleneck
caused by its software simulation of electric hardware so it is more likely to be used
in experiments rather than commercial use. There is a huge amount of works on VM
migration, but that focuses on heterogenous migration can be rare since there are always
an operating system running inside, which communicates with the virtual hardware and
it’s hard to migrate it to a heterogenous platform. As there are serval limitations for
VMmigration in the edge scenarios, containers can fit the edge computing environment
better, since containers can be lightweight, and occupy less resources than VMs do.

3 Typical Works

In this section, we will discuss some typical works about container migration in detail.
In the scope of container migration, applications nowadays are usually written in one or
more high-level programming languages. These high-level programming languages can
be classified as: interpreted languages (e.g. Java, Python, Perl, etc.), in which programs
are written when going to be executed, an interpreter is indispensable to interpret the
source code; compiled language (e.g. C, C++, etc.), inwhich programs arewritten should
be complied by a compiler to generate an executable file which will be loaded by the
OS when executed.

3.1 Interpreted Language Applications

For applications written in interpreted language, the runtime execution environment is
usually provided and managed by the interpreter, such as a Java Virtual Machine (JVM)
for Java programs and a Python Interpreter for Python codes. The runtime execution
environment provided by the interpreter including I/O, system functions, Garbage Col-
lection (GC), etc. which help the guest program run without being aware of what OS
is it running on so it’s relatively easy to migrate an application built on interpreted lan-
guages. As interpreted languages are usually provided with cross-platform interpreters,
applications can run on the heterogenous-ISA platform [4] easily. Some optimization
methods are also proposed to reduce the overhead of migrating an interpreted language
application.



Heterogeneous-ISA Application Migration 111

Chen et al. [13] proposed a programming framework COCA to offload computations
in cloud computing. COCA utilized aspect-oriented programming (AOP) to offload Java
applications in which computation can be offloaded to a destination site by inserting
additional information into the application to be migrated.

Bruno and Ferreira [14] proposed ALMA, a solution for JVM live migration. The
key idea of their work is to make a trade-off between the overhead of GC and the
transmission of data that needed to be transferred to the destination site. ALMA check
each heap memory periodically and estimate the time to be taken to collect each heap
memory area. By comparing the estimated velocity to collect a certain memory area and
the velocity of transmit this memory area to the destination site, the decision whether
the garbage in this memory area should be collected to get a minimal time of the sum
of the GC and transmission.

3.2 Compiled Language Applications

Compiled language applications can be loaded by the OS and executed directly and the
code should be compiled to the instruction set of the target machine. So, when compared
with interpreted language programs, it is much harder tomake it compatible for a process
to migrate across heterogenous platforms. There are some works proposed to extinct the
boundaries of heterogenous-ISA platforms to migrate a process on a certain platform to
another.

Barbalace et al. [4] focus on the energy consumption of a certain workload on
an ARM and an x86 server. They implement a whole toolchain from the OS-level,
including an extendedOSbased onPopcornLinux [15], customizedmulti-ISAcompilers
to generatemulti-ISAbinaries and runtime support ofmigration to the heterogenous-ISA
platform. The compilation toolchain in their proposed model finally link the program
of heterogenous-ISA version of the source code, ensuring that symbol addresses of the
program can be linked to the same address for alignment so that the related entry points of
functions and variables can keep the same even running in heterogenous-ISA platforms
for an easy state transformation.

Checkpoint/Restore In Userspace (CRIU) [12] is an open source project which can
save the state of a container/process into an image file on the disk. And we can transfer
the image files to the destination to restore the whole state of the migrated process. Note
that since CRIU snaps the whole state of a certain process including code segment of the
process, if the image were transferred to a heterogenous site with different instruction
set, the process cannot be restored unless we exert extra operations to the image files.
There are numerous works struggling to realize heterogenous-ISA migration based on
CRIU.

Barbalace et al. proposed H-Container [2], which stands for Heterogenous-ISACon-
tainer, tomigrate a container to the heterogenous-ISA platform.H-Container decompiles
the executable of the migrated application into LLVM IR as the intermediate represent,
and then insert some “migration points” for program to get paused at to trigger a migra-
tion operation. After this, the migrated application will be re-compiled to the destination
instruction set. What’s more, H-Container deals with the runtime state of the running
application to transform the image file to fit the destination site then restore the execution
of the container on the destination site.



112 H. Jin et al.

Unikernel can be also used in cross-ISA migration. Oliver et al. proposed Het-
erogeneous EXecution Offloading (HEXO) [16], utilizing unikernel virtual machine
which is an integrate OS-level application combined part of the kernel with user appli-
cation to migrate workloads on embedded platforms to save energy in HPC data centers.
HEXO requires migration points inserted into the application source code and compile
it using a heterogeneous-ISA toolchain to generate images of multi-ISAs for offloading
or migration.

Process migration has also been studied in heterogenous-ISA chip multiprocessors.
DeVuyst et al. [17] studied how tomigrate a process to a heterogenous-ISAcorewith little
performance loss to make a full use of heterogeneous-ISA CMP. Their work includes
identifying the program state, modifying the complier to compile a program with data
properly placed in the memory when executed so that migration cost can be reduced
and they also had a research on binary translation. The main idea of their work is to
keep the form of a program running in the memory the same in both source core and the
heterogenous destination core that the program can keep running natively to achieve an
acceptable performance.

Bhat et al. [18] proposed an operating system with replicated kernels which is
extended form Popcorn Linux and a customized compiler to migrate a process on an
ARM-x86 heterogenous platform. Their work focuses on migration in the heterogenous
platform which is composed of ARM and x86 architecture. There is a kernel on each
architecture which is compiled natively and communicates with each other via Popcorn
communication layer. Popcorn Single System Image runs on the both kernel and so
does the application. The application is buillt with the customized compiler in which
addresses of variables and function entry are placed to the same virtual address. The
executable also contains codes of both ISAs, the OS will map the corresponding code in
the executable to the same ISA. To migrate a process, the state on the source processor
is going to be packed and sent to the destination ISA via the communication layer and
restored after sending.

3.3 Hybrid Applications

Hybrid applications refers to applications that composed of one or more parts discussed
above. Android, one of the most popular operating system for smartphones and smart
SoCs, can be a great example for this. According to the official documentation [19],
an Android application can run native binaries of libraries or modules that written in C
codes for better performance. They are usually high-frequency or computation-intensive
functions or codes, which is called NDK libraries and can boost the overall execution
performance of the application.

Lee et al. [20] are the first to notice the migration of hybrid applications on Android
platform. As they described, the most popular Android applications such as Firefox,
VLC Player, etc., are built with C/C++ codes up to more than 50% of total codes to
boost the performance of the APPs. Most of the smartphones with Android installed



Heterogeneous-ISA Application Migration 113

are equipped with ARM processors while servers and desktop PCs are usually x86.
Noticing the performance gap of state-of-the-art smartphones and servers, this work
proposed Native Offloader, to identify the heavy tasks of an application that are able to
be migrated to a x86 server independently. The key of their work is the Native Offloader
Compiler, which analyzes the native codes of the application, partitions the original
code into client IR codes and server IR codes, then compiles IR codes for both platforms
to enable migration. When the workload running, client submits related data including
identifier, stack pointer and page table to the server and receives the dirty pages from
the server via network connections.

4 Purpose of Migration

In this section, we studied the existing works and classify them from the perspective of
main purpose and adaptable scenarios. We summaries this as several different aspects
and we believe that it will be of great importance to get a better comprehension of these
works.

4.1 Following User Mobility

Edge computing indicates offloading computation closer to the user to provide user
with low-latency services, and this will leads to a problem of following the user. In this
context, users are with great mobility, and so are the IoT devices.

The main purpose of H-Container [2] is to utilize as more potential target in the
edge cloud as possible to migrate those services in need of low latency such as gaming
and real-time calculation. There is a strong heterogeneity at the edge of the network
that edge devices can be servers, PCs, laptops or any embedded SoC devices such as
routers, gateways or wireless APs. These devices are built with x86, ARM and other
CPU processors. By enablingmigrating containers to heterogenous-ISA platforms, there
can be more candidate places to migrate a container that is serving the current user onto.
So the possibility to migrate an application to closest edge device to provide the user
with a consistent low-latency service when the user is moving to another edge cloud is
boosted.

4.2 Performance

The weak ability of computation can also be one of the serious problems that IoT
devices at the edge of the network have, since these embedded devices are usually
equipped with relatively low performance processors. When users are running some
computation-intensive applications on their smartphone, they will be willing to migrate
their workloads to an edge device with stronger computation ability to boost the per-



114 H. Jin et al.

formance of the application. This idea can be found in [20], which migrates partitioned
computation-intensive code from heavy tasks of an application to the server to acquire
better performance.

4.3 Energy Efficiency

Energy efficiency is now attractingmore andmore global attention to achieve the purpose
of environment protection. And data centers are also trying to do so to cut down the
electricity cost. Experimental evaluation of [4] indicates an average of 30% energy
reduction bymigrating applications toARMplatforms. The similar purpose can be found
in HEXO [16] for HPC workloads migrating to embedded devices with the unikernel
virtual machine discussed above. Works of [17, 18] are also intended to get a greater
energy efficiency by migrating processes onto heterogenous-ISA multiprocessors. The
migration studied in this work is about the migration between processor cores instead
of that between heterogenous machines.

5 Discussions

In this section, we will give some discussions on the works we mentioned above, sum-
marize the features of typical works and give an overview of them. Then we discuss how
a decision can be made among these valuable works from the perspective of applicable
scenarios, purpose and techniques, when a migration is required. At last, the existing
challenges and open research issues in heterogenous-ISA application migrations are
listed.

5.1 Comparative Study

We summarize the scenarios, techniques and advantages of someworks discussed above,
which are listed in Table 2. The timeline of these works is depicted in Fig. 2, which gives
an explicit relation and the development of them.

Fig. 2. Timeline that typical works are proposed



Heterogeneous-ISA Application Migration 115

Table 2. Comparison of existing typical works

Aspect DeVuyst et al.
[17]

Lee et al. [20] Bhat et al. [18] ALMA [14] Barbalace et al.
[4]

HEXO [16] H-Container
[2]

Virtualization
Technology

Container None None JVM Container Unikernel Container

Year 2012 2015 2016 2017 2017 2019 2020

Platform Heterogeneous
multicore

Mobile Heterogeneous
multicore

Universal Universal Universal Universal

Workload Compiled Hybrid Compiled Interpreted,
Java APPs

Compiled OS-level
Application

Compiled

Scenario Heterogeneous
multicore

Native Android
code

Heterogeneous
multicore

Universal Universal HPC data
center

Edge

Main purpose EE, PF EE, PF EE FT, LB, EE,
FS, LU, etc

EE EE, PF UM

System
component

CP, BT, ES, SP CR, IR CP, ES, SP JVM, CRIU CP, IR CP, Unikernel CP, IR, BT,
CRIU

Limitation Rare platform in
edge
environment

Lack of
demonstration
for real
Android Apps

Rare platform in
edge
environment

For Java
applications
only

Source code is
required

Not in real
edge
environment

Lack of
demonstration
for security

Mobile Device
Support

No Yes No No Yes No Yes

Sorted by year the work is proposed from left to right. The abbreviation list: FT: Fault Tolerance.
LB: Load Balance. EE: Energy Efficiency. FS: Fast Start. LU: Live Updates. UM: User Mobility.
PF: PerFormance. CP: ComPiler. ES: Extended System. SP: Special Platform. IR: Intermediate
Represent. BT: Binary Translation.

5.2 Scenarios and Selection

In this section, we will summarize typical works from the other view of user choice.
Figure 3 shows the process to select one of existing techniques and solutions, which
will help user decide when choosing to apply one of these solutions in the future. Note
that the final decision is not always fitting to a requirement perfectly and some of that
can be developed from the nearest solution, e.g. when migrating a Python application,
it might be derived from ALMA [16] or other similar works which are not listed since
Python applications are running in a similar way that Java applications do while both of
the languages are interpreted ones.

5.3 Open Research Issues

Though some typical works about application migration are proposed, there are still
some open issues remaining to be addressed. With the development of edge computing,
there will be more importance and challenges in the field of application migration.

User Privacy and Migration Security. Privacy protection is now drawing more and
more attention for mobile users and enterprises. As an important measure to migrate an
application, more attention should be paid on the privacy and security protection. An
application cannot run without data to be processed. In the circumstance of edge com-
puting, when users are enjoying the convenience brought by application migration, how



116 H. Jin et al.

Fig. 3. A decision-making guide diagram

to ensure the safety of data generated or provided by users can be an essential problem
to be studied. The protection includes not only the safety of VMs or containers user
application running in, but also the communication between the source and destination
site when executing a migration operation. More effective measures should be proposed
to boost the security of the data and user privacy.

Flexible Heterogenous-ISA Application Migration. As typical works show, when
applying a heterogenous-ISA migration solution, there are always modification to be
applied to the source code of the application, which is not friendly for developers to
develop or update their applications.

Optimization for Particular Edge Scenarios. Although techniques of heterogenous-
ISA migration have been studied in various platforms and they are likely to be adopted
by edge scenarios, there are still little works focus on real scenarios in edge computing,
especially for users with smart devices. To adapt to the edge computing scenario, solu-
tions should be optimized for the real edge environment and evaluated, while existing
works commonly focus on the performance of proposed solution itself.

6 Conclusion

In this paper, we described some typical works and solutions dedicating to solve the
problem of heterogenous-ISA application migration. They are all likely to be adopted
to boost the edge computing for purpose of quality of user services, performance and
energy saving, etc. We also give a comparative study on the existing techniques to
summarize their applicable scenarios and benefits by applying corresponding solutions.



Heterogeneous-ISA Application Migration 117

Then we presented a guidance for decisions on selecting migration solutions. At last,
open research issues are listed.

Acknowledgement. This work is supported by theNational Natural Science Foundation of China
(62072465).

References

1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE
Internet Things J. 3(5), 637–646 (2016)

2. Barbalace, A., Karaoui, M.L., Wang, W., Xing, T., Olivier, P., Ravindran, B.: Edge comput-
ing: the case for heterogeneous-ISA container migration. In: 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE) (2020)

3. Lertsinsrubtavee, A., Ali, A., Molina-Jimenez, C., Sathiaseelan, A., Crowcroft, J.: PiCasso: a
lightweight edge computing platform. In: 2017 IEEE 6th International Conference on Cloud
Networking (CloudNet) (2017)

4. Barbalace, A., et al.: Breaking the boundaries in heterogeneous-ISA datacenters. In: Twenty-
Second International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2017)

5. QEMU. https://www.qemu.org/. Accessed 23 Dec 2020
6. What is ESXI? Bare Metal Hypervisor, ESX, VMware. https://www.vmware.com/products/

esxi-and-esx.html. Accessed 23 Dec 2020
7. Oracle VM VirtualBox. https://www.virtualbox.org/. Accessed 23 Dec 2020
8. Windows VM, Workstation Pro, VMware. https://www.vmware.com/products/workstation-

pro.html. Accessed 23 Dec 2020
9. Clark, C., et al.: Live migration of virtual machines. In: 2nd Symposium on Networked

Systems Design and Implementation (NSDI) (2005)
10. Hines,M.R., Deshpande, U., Gopalan, K.: Post-copy livemigration of virtualmachines. ACM

SIGOPS Oper. Syst. Rev. 43(3), 14–26 (2009)
11. Hu, L., Zhao, J., Xu, G., Ding, Y., Chu, J.: HMDC: live virtual machine migration based on

hybrid memory copy and delta compression. Appl. Math 7(2L), 639–646 (2013)
12. CRIU. https://www.criu.org/Main_Page. Accessed 23 Dec 2020
13. Chen, H., Lin, Y., Cheng, C.: COCA: computation offload to clouds using AOP. In: 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)
(2012)

14. Bruno, R., Ferreira, P.: ALMA: GC-assisted JVM live migration for java server applications.
In: 17th International Middleware Conference (2016)

15. Barbalace, A., et al.: Popcorn: bridging the programmability gap in heterogeneous-ISA
platforms. In: Tenth European Conference on Computer Systems (EuroSys) (2015)

16. Olivier, P., Mehrab, A.K.M.F., Lankes, S., Karaoui, M.L., Lyerly, R., Ravindran, B.: HEXO:
offloading HPC compute-intensive workloads on low-cost, low-power embedded systems.
In: 28th International Symposium on High-Performance Parallel and Distributed Computing
(HPDC) (2019)

17. DeVuyst, M., Venkat, A., Tullsen, D.M.: Execution migration in a heterogeneous-ISA chip
multiprocessor. In: The seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (2012)

18. Bhat, S.K., Saya, A., Rawat, H.K., Barbalace, A., Ravindran, B.: Harnessing energy efficiency
of heterogeneous-ISA platforms. ACM SIGOPS Oper. Syst. Rev. 49(2), 65–69 (2016)

https://www.qemu.org/
https://www.vmware.com/products/esxi-and-esx.html
https://www.virtualbox.org/
https://www.vmware.com/products/workstation-pro.html
https://www.criu.org/Main_Page


118 H. Jin et al.

19. Concepts, Android NDK, Android Developers. https://developer.android.com/ndk/guides/
concepts. Accessed 23 Dec 2020

20. Lee, G., Park, H., Heo, S., Chang, K.A., Lee, H., Kim, H.: Architecture-aware auto-
matic computation offload for native applications. In: 48th International Symposium on
Microarchitecture (MICRO) (2015)

https://developer.android.com/ndk/guides/concepts

	Heterogeneous-ISA Application Migration in Edge Computing: Challenges, Techniques and Open Issues
	1 Introduction
	2 Virtualization and Migration
	2.1 Simulation
	2.2 Virtual Machine
	2.3 Containers
	2.4 A Comparative Study

	3 Typical Works
	3.1 Interpreted Language Applications
	3.2 Compiled Language Applications
	3.3 Hybrid Applications

	4 Purpose of Migration
	4.1 Following User Mobility
	4.2 Performance
	4.3 Energy Efficiency

	5 Discussions
	5.1 Comparative Study
	5.2 Scenarios and Selection
	5.3 Open Research Issues

	6 Conclusion
	References




