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Abstract. Computing resources of mobile devices are growing, and
unoccupied resources can be shared to provide support for edge comput-
ing services in edge clouds. Unlike stable servers, a significant challenge
is that mobile devices may exit or join an edge cloud at any time due
to change of position. This dynamic nature of mobile devices may result
in abortions of task execution. In this paper, a risk-aware task assign-
ment scheme called RATA is proposed. RATA minimizes the overhead
caused by potential abortions of task execution by prioritizing tasks to
the edge nodes which are unlikely to exit during task execution. We first
quantify the abortion risk of each task-node pair to an expected extra
overhead time, and formulate a risk-aware task assignment problem that
strives to minimize the average completion time of all tasks, as well as
the expected extra overhead time of each task. We then design a novel
task assignment scheme to solve this problem with genetic algorithm.
Finally, we implement a prototype system to evaluate the performance.
The experimental results show that our scheme outperforms the state-
of-art task assignment schemes in terms of average completion time and
deadline miss rate in most cases.

Keywords: Task assignment - Task scheduling - Edge computing -
Risk-aware + Mobile device

1 Introduction

Edge computing aims to perform computation tasks by making full use of
resources at the edge of the network [1,11,16]. Similar with BOINC [2], under-
utilized resources of mobile devices in crowded places such as business centers,
can also be fully utilized by user devices with limited resources to speed up task
execution. Assigning tasks, especially latency-sensitive ones, appropriately and
efficiently in edge clouds is of great importance. However, the dynamic nature of
mobile devices is a great challenge, as they can dynamically exit the edge cloud,
resulting in abortions of tasks assigned to these devices. Task completion can
be ensured through re-assignment and re-execution, but this brings significant
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overhead, resulting in missing the deadline, which is a potential time limit for a
device to complete an assigned task.

Most previous works on the task assignment considered bandwidth con-
straints and task constraints [12,22]. However, these work did not take into
account the instability of edge nodes in edge clouds as well as the unstable con-
nectivity of mobile networks, assuming that the execution process is fault-free,
which is unrealistic. Femtocloud* [10] proposes a risk-controlled task allocation
mechanism, which aims to minimize the risk of edge nodes leaving before tasks
are completed. However, it performs worse in terms of average completion time
especially when the workload is light, compared with other approaches to mini-
mize the average completion time.

We focus on the abortion of task execution caused by unstable edge nodes, or
abruptly interrupted wireless network in edge environment. The key to solve this
problem is minimizing the potential overhead time caused by abortions. Main
contributions of this work can be summarized as follows.

— We study the task assignment in edge cloud consisting of dynamic mobile
devices. We explicitly consider the impact of abortions of task execution on
task completion time. We analyze and quantify the expected extra overhead
time introduced by abortions based on the probability distribution of task
completion time and the remaining presence time of edge nodes.

— We propose RATA, a risk-aware task assignment scheme. With extra overhead
time to be taken into account, RATA aims to minimize the average completion
time as well as the extra overhead time of each task, by selecting more reliable
and powerful edge nodes for each task.

— We implement a prototype system. The experiment results show that RATA
performs better in terms of average completion time and deadline miss rate,
compared with the state-of-the-art works.

2 Related Work

Most existing works [3,12,19] focus on task assignment problem with edge servers
in edge clouds. Even though they take various factors (e.g., users’ location, net-
work capabilities, order between assigned tasks) into account, execution envi-
ronments of these works are failure-free. BGTA, CoGTA and TDBU [21-23] are
proposed to assign social sensing tasks to mobile edge devices. These frameworks
allow edge devices to choose task with preferences by game theory so as to opti-
mize both their payoffs and the deadline miss rate. However, these works don’t
consider the dynamic churn rate of mobile devices.

Deng et al. [7] present a novel offloading system to make robust offloading
decisions with a trade-off fault-tolerance mechanism, which can pick a better
choice between waiting for reconnection and directly restarting the service when
a fault happens. Although this work considers the unstable connectivity of mobile
networks, it only considers reducing the overhead brought by happened abortion
failures rather than reducing the occurrence of abortion failures. Habak et al.
[9] present Femtocloud, an edge system to leverage mobile devices to provide
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edge service with a task assignment approach which aims to maximize cluster’s
overall useful computations. They present an improvement on the system archi-
tecture and workload management in Femtocloud* [10]. This work presents a
risk-controlled task assignment approach, which is the first to focus on reducing
potential abortions. It applies a point estimate (e.g., mean of subset of historical
running times) to predict task completion time. Besides, Femtocloud calculates
the abortion probability to represent the abortion risk. However, the abortion
probability doesn’t accurately reflect the extra time consumed by abortions since
duration of task execution before the abortion is different. As a result, Femto-
cloud actually prioritizes on reducing potential abortions more than minimizing
task completion time.

Tumanov et al. [17] present a novel black-box approach called JamaisVu to
predict job running time utilizing its running history. This approach is tested
to perform well for predicting real-world job mixes and help to make robust
scheduling decisions. Park et al. [14] conduct experiments to show that the app-
roach derived from JamaisVu can give more accurate prediction for job running
time than a point estimates. Their work develops JamaisVu and presents 3Sigma
which leverages full distribution of relevant running time histories to schedule
jobs by using probability density function to model the utility of jobs. With this
perspective of distribution-based scheduling, we quantify the abortion risk as
the expected extra overhead time based on the distributions of completion time
taken by tasks and the presence time that the edge nodes exist in the edge cloud.

Checkpointing can provide distributed systems [5,6] with the ability of fault
tolerance by periodically saving tasks’ state for recovery. Some works use check-
pointing approach to build fault-tolerance mechanisms for robust computation
offloading [7,8]. Since we mainly focus on the intrinsic ability of task assignment
schemes, we don’t apply checkpointing into RATA and baselines for task recovery.

3 System Model and Problem Formulation

3.1 System Model

A diagram of edge cloud leveraging mobile devices is shown in Fig. 1. The model
includes following components.

Edge Cloud: An edge cloud consists of a controller (a cloud server or edge
server) and a certain number of edge nodes (servers or mobile devices), con-
nected with each other via Access Points (APs) in a Local Area Network (LAN).
Presence time is used to denote the duration between the moment a mobile
device joins and the moment the mobile device exits. Edge nodes are modeled as
EN = {eny,ena,...,en;}, where J is the total number of edge nodes in the sys-
tem. Transmission rates between the controller and edge nodes are modeled as
TX = {txy,txs,...,tx;}. Each edge node maintains a certain number of workers
to execute tasks, and a waiting queue for tasks. For edge node j where 1 < j < J,
the waiting queue length of it is defined as gl;, and the average execution time of
tasks among workers is defined as TjAvg. Note that mobile devices in the figure are
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the ones sharing their underutilized computation resources, rather than devices
submitting tasks.

Edge Service: An edge service is invoked by a mobile user. Each edge service
accepts a task with input data, and produces a result by assigning them to
edge nodes for executing. All tasks in one assignment are modeled as TK =
{tk1,tka, ..., tkr}, where I is the total number of tasks. For task i where 1 <4 < I,
the size of the input data is defined as s;. Since edge nodes are heterogeneous in
terms of hardware and software, execution time of a specified task varies from
node to node. We define ¢7% as the execution time of task ¢ in edge node j where
1<i<Ii<j<J.

Task Assignment Strategy Profile: A task assignment strategy profile
defines each task’s choice of edge node, which are modeled as variable matrix
X ={z11,219, ., 211,212, ..., 1 ;}. ©;; = 1,1 <1 < 1,1 <j <Jimplies task
7 would be assigned to edge node j, while z; ; = 0 means not.

3.2 Problem Formulation Without Abortion Risk

The entire process of task assignment consists of three stages. First, the task and
its input data need to be transmitted from controller to the target edge node.
If all the workers in the target edge node are busy, then the task will be added
into the waiting queue and wait until being chosen to execute. At last, the task
will be executed by one of the workers in the target edge node. Therefore, if we
assume that the connection is always stable, the completion time ¢;” ' of task i
in edge node j can be calculated as

P = (1)

s
where the transmission time t}”; can be calculated by t{"; = t—l The waiting
: 7

time t}”t can be calculated by tw = ql; x TAW The execution time #{% can be
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predicted using the distribution of task execution time history, we will describe
the approach in Sect. 4. Equation (1) ignores propagation latency as well as the
transmission time of the output, because they are too small to be compared with
other parts.

For Eq. (1), a frequently-used task assignment policy is assigning a task to
the edge node with shortest complete time greedily. However, this policy may
assign multiple tasks to a particular edge node, which results in extra waiting
time among these tasks. In consideration of this issue, we formulate the task
assignment problem as a 0—1 integer linear program as follows, which strives to
minimize the batch completion time of all the tasks, in other words, to minimize
the average completion time.

miny (i x 7)) + (3 wiy — 1) x T ®)
1) i
S.t. ZZ'Z’J — ]_ (3)
J
2;;€{0,11,1<i<I,1<j<J (4)

We present a congestion-avoiding mechanism which adds up a compensation
term to represent the extra waiting time cause by multiple tasks in the same
edge node, in order to solve the aforementioned issue. Constraints (3) ensure
that each task can be only assigned to one edge node.

3.3 Problem Formulation with Abortion Risk

To consider the dynamic nature of mobile devices and the abortion risk, we follow
the perspective of distribution-based scheduling [14]. We think of the completion
time of task, as well as the presence time of edge nodes using probability distri-
bution. In fact, we focus on the remaining presence time which is equal to the
difference between the presence time of an edge node and the elapsed time from
the moment it joined in. When assigning a task to an edge node, we suppose the
remaining presence time of the edge node as random variable RPT and its law
of probability distribution is

Pm = P(RPT =rpt,,),m=1,2,..,. M (5)

where rpt,,, denotes the possible values of RPT and M denotes the total number
of these values. Similarly, we suppose the completion time of the task as random
variable CT' and its law of probability distribution is

gn = P(CT =ctp),n=1,2,.... N (6)

where ct,, denotes the possible values of C'I" and N denotes the total number of
these values. In fact, the two random variables are independent of each other.
The relationship of related probability distribution is showed in Fig. 2, where ¢¢
refers to the time elapsed from the moment edge node joined in.
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Then we can calculate the abortion probability «, namely the probability
that the remaining presence time is shorter than the completion time, by Eq.
(7).

a=PRPT<CT)= > (pm *an) (7)

Tptm <ctyn

Further, we quantify the extra time that a potential abortion of task execu-
tion will bring up. Since the task assignment decisions at each cycle are indepen-
dent with each other, in order to calculate the potential abortion overhead for
one certain decision, we assume that after an abortion, the second execution of
the task will be certainly completed. And we assume this task will be reassigned
to an edge node which has a similar capacity with that of the origin one, so the
completion time will be the same. Based on these assumptions, we suppose the
total completion time under abortion risk as a random variable TC'T" defined by

Eq. (8).
T ,RPT > CT
TCT = (8)

RPT+CT ,RPT<CT

The expectation of TCT can be calculated by:

E(TOT) = Z (pm X qn X Ctn) + Z (pm X gn X (Tptm + Ctn))

Tptm >ty TPty <ctp

= " Pm X @ X ctn)+ D> (Pm X qn X TPtm) (9)

rptm <ctp

=E(CT)+ Y (pm X qn X ply)

rptm <ctpn

where E(CT) is the expectation of C'T. We define random variable ET as the
extra time caused by the abortion, the expectation of ET will be

E(ET)= Y (pm X qn X 1ptn) (10)

rptm <ctn

Particularly, E(ET) will be zero if the abortion probability a equals to zero,
when an edge node will never exit from the system or lose connection to the
controller. We can treat the expected extra time as the representative of the
abortion risk. The shorter the expected extra time is, the smaller the abortion
risk is.

Based on the derivation above, we update the Eq. (1) to Eq. (11). We define
tftj as the predictions of the expected extra time ET. Therefore, the expected
task completion time tffjt under abortion risk, is the sum of task completion time
and the expected extra time.

£ =t 15 (11)
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We will describe the details to predict ¢ in Section 4. The risk-aware task
assignment problem can be updated as follows.

min Z(x” X tffjt) + (Z x5 — 1) x TJA”Q (12)
1,7 i
sty @i =1 (13)
J
Ii7j€{071}71§i§171§j§=] (14)

This updated problem aims at minimizing the sum of all the expected task
completion time. In the optimization process, the solver will try to choose a
stabler edge node to reduce the expected extra time for each task.

4 System Design of Task Assignment

4.1 System Architecture

The overview of system architecture is shown in Fig. 3. It consists of two main
components: a controller and a set of edge nodes. The controller is responsible for
receiving tasks from users, distributing tasks to suitable edge nodes and return
the results. It consists of following modules.

— Task Originator Interface: receives service requests (tasks and their input
data) from users, and returns back results of completed tasks.

— Task Manager: collects tasks, which are new or going to be reassigned, and
submits these tasks to the Scheduler.

— Node Manager: maintains the connection with edge nodes and collects
information of each edge node (e.g. IP address and waiting queue length).

— Predictor: responsible for generating time predictions as the input in equa-
tion (1) and (11). It consists of several Task Predictor Units and Node Pre-
dictor Units. Each Task Predictor Unit maintains distributions of execution
time for tasks of a group of edge nodes with the same software and hardware
configuration. Similarly, Each Node Predictor Unit maintains distributions of
presence time for a group of edge nodes with the same network environment.
The way to make predictions is discussed in the Subsect. 4.2.

— Scheduler: collects predictions of task-node pairs from the Predictor, and
make assignment decisions at the start of each assignment cycle.

— Task Tracker: forwards tasks to target edge nodes, then tracks execution
states, returns task results to the Task Manager and the Predictor. Specially,
failed tasks will be kept in Task Manager for next assignment.

Edge nodes are responsible for executing their assigned tasks. Each of them
consists of following modules.

— Task Manager: receives assigned tasks from the Controller, puts them into
a waiting queue, and returns execution results after completed.

— Work Thread: when idle, execute a task in the waiting queue.

— Heartbeat Thread: responsible for keeping the connection with the Con-
troller, report node status periodically.
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4.2 Generating Predictions and Probability Distributions

We follow the black-box approach of 3cPredict [14] to generate distributions and
predictions for tasks. This approach does assume that most tasks will be similar
to some subsets of previous tasks, and similar tasks will have similar execution
times. It does not require any task structure, or user-provided information about
the execution time, but a set of features of each task. We choose three features,
the user name of the task, the task name, and the logic task name (e.g. face
recognition). For each feature-value pair, the approach tracks every completed
tasks which have the same value of that feature and generate an empirical dis-
tribution which is stored as a histogram using a stream histogram algorithm
[4] with a maximum of 40 bins. Each histogram will maintain four point esti-
mates using four estimation techniques: average, median, moving average with
decay 0.5 and average of 20 recent tasks. In addition, each histogram tracks the
Normalized Mean Absolute Error (NMAE) of these four estimates. When pre-
dicting the execution time of a task with several features, this approach firstly
collects all point estimates of these features. Then it chooses the point estimate
with lowest NMAE as the prediction of execution time, and at last, the dis-
tribution which owns that point estimate will be chosen as the distribution of
execution time for the task. Based on the approach described above, each Task
Predictor Unit serves for a group of edge nodes with the same machine type. A
machine type means a configuration of hardware and software. Edge nodes with
the same machine type will have a similar computational capacity. What’s more,
we append one histogram to track all the completed tasks regardless of features
in each Task Predictor Unit, in order to predict the average task execution time
tAvg'

As for the presence time of edge nodes, we use the same histogram algorithm
to generate distributions in each Node Predictor Unit serving for a group of
edge nodes with the same environment type. A environment type represents a
concrete network environment. For example, edge nodes connecting to the same
AP share the same type. We assume that each edge node with the same type
will have similar characteristic of mobility.

We append two algorithms as follows to translate a histogram to a probabil-
ity histogram, based on the histogram algorithms defined in [4]. A histogram is
a set of B pairs (called bins) as an approximate representation of a set of real
numbers, denoted by {(v1, f1), ..., (v, fB)}. For each pair (v;, f;),1 < i < B,
v; denote the value of a number, f; denote the frequency of the number. We
define a new concept called probability histogram as a variant of the histogram.
A probability histogram is also a set of B pairs {(v1,p1), ..., (vg,p5)}, but for
each pair (v;,p;),1 < i < B, p; denotes the probability of the number. In other
word, a probability histogram is an approximate representation of a probabil-
ity distribution. These two new algorithms show the details of two particular
translation from histogram to probability histogram. Algorithm 1 first performs
a right shift operation on a histogram with an offset, then translates the new
histogram to be a probability histogram. Algorithm 2 first filters the pairs whose
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value is smaller than an offset from a histogram, then translates the rest of the
histogram to a probability histogram.

Algorithm 1. Right-Shift and Probability Translation Procedure

Input: A histogram {(v1, f1), ..., (vB, fB)}, a offset &
Output: A probability histogram {(u1,p1), ..., (uB,pB)}-
1: Set S=32 f

2: fori=1to B do
3 Ui = v; +0

4 pi=fi+S

5: end for

Algorithm 2. Probability Translation Beginning with an Offset Procedure
Input: A histogram {(v1, f1),..., (vB, fB)}, a offset 6
Output: A probability hlstogram {(u1,p1), ..., (uc,pc)}.
1: Find 7 such that p; < § < pi+1
if p, = 6 then
Set S=37, fi
else
Set S=37 foi=i+1
end if
for j=itoB,k=1to B—i+1do
Uk = Vj
=fr+S

: end for

—_

The relation between probability distribution of task completion time and
that of task execution time is showed in Fig. 2. To get the probability histogram of
task completion time, we first calculate the sum of transmission time and waiting
time as the offset, then we call Algorithm 1 with histogram of task execution
time as the input. Similarly, the relation between probability distribution of
remaining presence time and of presence time are also depicted in Fig.2. To
get the probability histogram of remaining presence time, we first calculate the
elapsed time from the moment when the edge node joined as offset, then we call
Algorithm 2 with histogram of presence time as the input.

At last, once we have generated the probability histogram of task completion
time and that of the remaining time of edge node, we can calculate the expected
extra time by Eq. (10), and the expected task completion time by Eq. (11).

In consideration of scalability, we employ three techniques to reduce the mem-
ory footprint. Firstly, the original design of 3cPredict can maintain a histogram
using constant memory regardless of the number of points. Secondly, in spite
of heterogeneity, we use one Task Predictor Unit to serve for a groups of edge
nodes with the same machine type rather than just one edge node. Finally, we
use one Node Predictor Unit to serve for a groups of edge nodes with the same
environment type rather than just one edge node.
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4.3 Task Assignment Algorithm

We choose the genetic algorithm to solve the problem, which is a heuristic
method to search approximate solutions for optimization problems with evo-
lutionary theory, and is often used to solve task assignment problems [7,13,20].

For a given task set TK = {tki,tks,...,tkr} and edge node set EN =
{eny,ens,...,ens}, we encode the task assignment strategy X = {z; ;,1 < i <
I,L1<j<J}toavector S ={s; =en;,1 <i<I1<j<J} asachromosome.
s; = en; means that task ¢ is assigned to edge node j. We define the fitness
function as follows.

1

F’LtneSS(TK, EN, X) = T){) (15)
C(X) = iy x ¢ + O _mi; — 1) x T (16)
0 i

Referring partly to the experiment of 7], we use the roulette-wheel method
in the selection phase. In the crossover phase, we choose the standard one-point
crossover operator and set the cross probability to 0.3. In the mutation phase, we
choose the standard uniform mutation operator and set the mutation probability
to 0.3. The population size is set to 20. We limit the maximum iteration number
to 100, in order to ensure an negligible overhead of calculation compared with
task completion time.

5 Experimental Evaluation

5.1 Experimental Setup

A prototype is implemented to evaluate RATA. Controller module runs on a
desktop PC, while the edge node modules run on heterogeneous mobile devices
such as laptops and Raspberry Pis. Modules are written in GoLang and launched
in Linux environment, using gPRC for communication between modules. When
a new edge node comes up, the edge node calls JoinGroup to register itself
first, then starts calling Heartbeat to report its information periodically. When
exiting, the edge node module calls EzitGroup to logout. The controller module
calls AssignTask to forward tasks to edge node modules, which call ReturnResult
to return results. To evaluate the intrinsic ability of reducing abortions, we don’t
apply any checkpointing techniques.

Hardware Configuration: Table1 listed hardware characteristics of devices
used for testbed experiment as edge nodes. Besides, a desktop PC equipped
with an Intel(R) Core(TM) i5-8400 processor, 16GB RAM and Gigabit Network
Adapter (connected to LAN via cable) is used as the Controller.

Workload: We use synthetic matrix multiplication Python tasks derived from
the Google cluster trace [15], which is also used in experiments of previous works
[12,14]. As tasks with short execution time are more suitable in edge computing
with mobile devices, we filter out tasks whose execution time are larger than
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Table 1. Hardware characteristics of edge node devices

Device Computation capacity | Bandwidth | Connection

2 X Raspberry Pi 3B+ | 2.7 MFLOPs 13.2 Mbps | Wireless LAN
3 x Raspberry Pi 4B | 15.1 MFLOPs 15.3 Mbps | Wireless LAN
Surface Pro 4(M3) 8.7 MFLOPs 95.9 Mbps | Wireless LAN

10 min. We cluster the remaining tasks using k-means clustering on their exe-
cution time, and draw tasks from each task class proportionally to generate the
workload. We bind each task in the workload with three features: user name
of the task, task name, and logic task name. Since the tasks derived from the
Google cluster trace don’t have task names, we replace their job name by their
task name, so do the logic task name. We generate the size of input data file of
each task using a uniform distribution U(0OMB, 10 MB).

In order to take into account the impact of deadline, we use deadline slack [14]
to generate deadlines for 50% of the tasks in the workload randomly. Deadline
slack is defined as follows.

(deadline — executiontime)

deadlineslack = x 100% (17)

executiontime
By default, we use a uniform distribution U(250%,300%) to generate deadline
slacks, which are experimented in [18].

We totally generate 1200 tasks for testbed experiment and 15000 tasks for
simulation experiments. For each experiment, the workload will be divided into
6 groups, we randomly choose a group to pre-train the Predictor, and the rest
groups to conduct evaluation. We use a Poisson arrival process to model the
arrival of tasks.

Baseline: We compare the performance of our risk-aware task assignment
scheme (RATA) with the following existing task assignment schemes.

— Shortest Completion Time First (SCTF): Dispatch a task to the edge
node with shortest completion time greedily.

— Minimize Batch Completion Time (MBCT): Use genetic algorithm to
solve the original task assignment problem as formulation (2)—(4).

— Femtocloud: Femtocloud* [10] first sorts edge nodes by churn probability
and gets a temporary best node. Then it iterates on the sorted list of edge
nodes, comparing each candidate node with the best one in terms of gain
(relative difference of completion time) and risk (relative difference of churn
probability). If the gain exceeds the risk, it switches these two edge nodes.

Metrics: For tasks without deadlines, we use average completion time and
average number of executions to measure the performance of task assignment.
For tasks with deadlines, we use deadline miss rate to measure the performance.
These metrics are listed below.
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— Average Completion Time: average time tasks consume to get completely
executed.

— Average Number of Executions: average times that tasks are executed
(include abortions).

— Deadline Miss Rate: the percentage of tasks missed their deadline.

5.2 Testbed Experiment

In testbed experiments, similarly with Femtocloud [10], once an edge node leaves,
it will return after an OFF period which follows a normal distribution with mean
equals to 20% of the average presence time. Therefore, each edge node’s duty
cycle is set to 80% on average. Some parameters are shown in Table 2.

Table 2. Parameters of testbed experiment

Parameter Value

Duration of each assignment cycle 1s

Worker thread at each edge node 3

Edge node queue management policy First-Come-First-Serve

Average presence time | Raspberry Pi 3B+ | 25 min
Raspberry Pi 4B | 15 min
Surface Pro 4(M3) | 20 min

Figure 4 shows the performance of all these task assignment schemes on our
testbed. Overall, RATA has the shortest average completion time and lowest
deadline miss rate among listed schemes. Although RATA has a similar average
number of executions with Femtocloud, the average completion time is shorter
and deadline miss rate is lower. In simple terms, Femtocloud tends to select
stabler edge nodes which may lead to longer task completion time to acquire
lower abortion probability. As for MBCT, RATA outperforms it because the risk-
aware mechanism reduces the abortions of task execution, which is reflected by
the lower average number of executions. SCTF performs worst since it minimizes
neither the batch completion time nor the abortion risk.

Controller Edge Nodes = Average Completion Time

—— Average Number of Executions
Task
L originator s
Interface Manager

Task
SchedulerH Teeor BT

Manager

Worker
Threads

I

Task
Manager

=

Average Completion Time(s)

0
SCTF MBCT Femtoclond RATA SCTF MBCT  Femtocloud  RATA

Fig. 3. System architecture. Fig. 4. Result of the testbed experiment.
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5.3 Simulation Experiment

Simulation experiments are launched with larger number of simulated edge
nodes. Each simulated edge node is an edge node module running on the desktop
PC. We generate the bandwidth of simulated edge nodes using a uniform dis-
tribution U(8 Mbps, 80 Mbps). Transmission processes are simulated by a sleep
function. A Poisson arrival process is used to model the arrival of edge nodes,
and a normal distribution is used to generate presence time of each edge node.
The standard deviation is set to 20% of the mean, similarly to Femtocloud.
We study the impact of some parameters on task assignment performance in
this experiment. Variations of these parameters can affect load status and the
abortion risk. Default values of them are listed in Table 3.

Table 3. Default parameters of simulation experiments

Parameter Value

Task arrival rate 180 tasks/min

Average presence time | 20 min

Edge node arrival rate | 5 nodes/min

Impact of Task Arrival Rate: Task arrival rate directly affects the waiting
queue length in edge nodes. As Fig.5 shows, all metrics increase as this rate
increases. However, RATA has the shortest average completion time and lowest
deadline miss rate in most cases. Compared with MBCT, RATA has a similar
average completion time but a lower deadline miss rate and average number of
executions. Femtocloud has a similar average number of executions but a longer
average completion time compared with RATA. Since RATA can quantify the
expected overhead time brought by an abortion, it will compare a potential
longer overhead time with a shorter task completion time when making task
assignment decisions.
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—e—MBCT
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Femtocloud
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nber of Executions
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Fig. 5. Impact of task arrival rate. (a) Average completion time. (b) Average number
of executions. (¢) Deadline miss rate.
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Impact of Edge Node Arrival Rate: Edge node arrival rate directly affects
the number of edge nodes in the edge cloud. Figure 6 shows the impact of edge
node arrival rate. Overall, all the metrics decrease as the arrival rate increases,
and RATA outperforms other baselines in terms of three metrics in most cases.
RATA has a similar performance with Femtocloud to reduce abortions of task
execution in terms of average number of executions, but has a shorter average
completion time and a lower deadline miss rate. Compared with MBCT, RATA
has a similar performance on average completion time, but a lower average num-
ber of executions and deadline miss rate.
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Fig. 6. Impact of edge node arrival rate. (a) Average completion time. (b) Average
number of executions. (¢) Deadline miss rate.

Impact of Edge Node Heterogeneity: This aims to test the ability to make
full use of edge nodes with more computation capacity but shorter presence
time. A new group of simulated edge nodes with this characteristic are newly
introduced, modeled as a normal distribution N(5 min, 30s). Figure 7 shows the
impact of changing the arrival rate of these simulated edge nodes. Overall, all
the metrics except the average number of executions decrease as the arrival rate
increases. Femtocloud performs better than other schemes including RATA on
keeping low average number of executions. This result shows the difference that
RATA prefers to choose those edge nodes which can offer a shorter comple-
tion time for tasks despite of the higher abortion risk, while Femtocloud prefers
stabler edge nodes.
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Fig. 7. Impact of edge node heterogeneity. (a) Average completion time. (b) Average
number of executions. (¢) Deadline miss rate.
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Impact of Average Presence Time of Edge Nodes: This directly affects
the abortion probability of task execution. Once an edge node leaves, it will
return after an OFF period. The OFF period is modeled the same as the testbed
experiment. Figure8 shows the impact of changing the average presence time,
where 400 means the edge nodes will never leave during the experiment. Overall,
most metrics decrease as the presence time increases. RATA and MBCT have the
shortest average completion time and lowest deadline miss rate, while RATA and
Femtocloud outperform other baselines in terms of average number of executions.

200 L

SCTF
—MBCT

——SCTF ‘
35
~e—~MBCT

Femtocloud

——SCTE,
RATA 25

5 3

MBCT

Femtocloud Femtoc| oud

Average Completion Time(s)

Deadline Miss Rate(%)

RATA RATA

8

Average Number of Executions

£

5
20 25 30 35 +o0 20 25 30 35 +o 15 20 25 30 35 o
Average Presence Time(min) Average Presence Time(min) Average Presence Time(min)

(a) (b) (c)

Fig. 8. Impact of average presence time of edge nodes. (a) Average completion time.
(b) Average number of executions. (¢) Deadline miss rate.

6 Conclusion

In this work, we study the risk-aware optimization of task assignment in edge
cloud consisting of dynamic mobile devices. We formulate a risk-aware task
assignment problem, which aims to reduce the average completion time as well
as abortions of task execution, and give a solution to this problem. We design
and implement a prototype system to evaluate the method. Experiment results
show that our scheme outperforms the state-of-the-art work in terms of average
completion time and deadline miss rate in most cases.
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